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Abstract

Reinforcement learning (RL) has scaled up im-
mensely over the last few years through the
creation of innovative distributed training tech-
niques. This paper discusses a rough time-
line of the methods used to push the field for-
ward. I begin by summarizing the problem
of reinforcement learning and general solution
methods. I then discuss the training environ-
ments used to evaluate model performance. I
walk through a timeline of breakthroughs in
distributed training used to scale up RL mod-
els, as well as other innovations in RL train-
ing. Finally, I take a look at exciting applica-
tions of distributed training processes in com-
plex games like Go, Dota 2, and StarCraft II.

1 Introduction and Problem Space

Reinforcement learning is at the intersection of nu-
merous fields like statistics, machine learning, neu-
roscience, and robotics. In this section, I provide
a broad summary of reinforcement learning and
analyze general methods for solving RL problems.

1.1 Reinforcement Learning Background
For the purposes of this survey, I consider a stan-
dard reinforcement learning (RL) setting where an
agent interacts with an environment E over a set
of discrete timesteps. Each timestep t, the agent
receives the state, denoted st ∈ S, and selects an
action to take among all possible actions, denoted
at ∈ A. The agent selects an action at a particular
state using its policy π, which maps from the state
space to the action space π : S → A. After select-
ing an action, the agent receives the next state st+1

and a scalar reward rt.
This process repeats until the environment’s ter-

minal state is reached, called the end of the episode.
The return at any given timestep is defined as the
cumulative future reward Gt =

∑∞
k=0 γ

krt+k with
some discount factor γ ∈ [0, 1]. The goal is for the

agent to maximize the expected return from each
state st.

The action-value function Qπ(s, a) =
E[Rt|st = s, at = a] is the expected return
after selecting action a in state s using policy
π. The goal of many RL algorithms is to accu-
rately model the optimal action-value function
Q∗(s, a) = maxπ Q

π(s, a), which uses a policy
that selects actions maximizing the action-value
function at any given state. The state-value
function V π(s) = E[Rt|st = s] is the expected
reward a policy π receives from a particular state
s. A similar but slightly different goal would
be to model the optimal state-value function
V ∗(s) = maxπ V

π(s), which maximizes the
expected return for any given state s.

The agent either has a model of the environ-
ment E , or it chooses not to model the environ-
ment E , called model-free RL. In general, the field
uses model-free reinforcement learning to solve
problems because the agent is generalizable past a
specific environment and avoids complicated mod-
eling considerations for the environment. In gen-
eral, most solutions to RL problems fall into one
of three categories: value-based methods, policy-
based methods, or actor-critic methods.

Value-based model-free RL methods represent
the action-value function using a parameterized
function approximator with parameters denoted θ.
Almost all of the methods I discuss in this paper
vary the algorithm used to derive the parameters
θ; however, they are all some form of deep neural
network.

On the other hand, policy-based model-free
methods attempt to directly model the policy
π(a|s; θ), typically using gradient-based methods
on the expectation of returns E[Gt].

Actor-critic methods consider a learned esti-
mate of the value function called the baseline
bt ≈ V π(s). Using the baseline, the difference



between the reward Q(at, st) and the baseline bt is
an estimate of the advantage of action at in state st,
formally defined as A(at, st) = Q(at, st)− V (st).
In this case, the policy π is the actor and baseline bt
is the critic. The goal is for the actor to maximize
the value of the advantage.

Reinforcement learning takes two different
forms: on-policy and off-policy. On-policy meth-
ods are summarized by David Silver by the phrase
“learning while on the job,” and approximate a pol-
icy π using experience drawn from an agent fol-
lowing policy π. Conversely, off-policy methods
are summarized by the phrase “learning by looking
over someone’s shoulder,” and approximate a tar-
get policy π using experience drawn from an agent
following a different behavior policy µ.

The environment E is generally considered a
Markov Decision Process (MDP), which is a quin-
tuple (S,A,R,P, γ). S represents the state space,
A represents the action space, R represents the
reward function given a state-action pair, P repre-
sents the transition probability given a state-action-
successor triple, and γ is the discount factor.

1.2 Baseline Deep RL Model: DQN

Next, I consider an important baseline model her-
alded as the first successful deep learning method
applied to reinforcement learning problems: the
Deep Q-Network (DQN) (Mnih et al., 2013).

DQN builds off of Q-learning, which iteratively
applies updates based on the Bellman optimality
equation:

Qt+1(s, a) = E[r + γmax
a′∈A

Qi(s
′, a′)|s, a]

where s′ is the successor state, a′ is an action
taken at the successor state, and Qi(s, a) is the
action-value function at iteration i. These value
iteration algorithms are guaranteed to converge to
the optimal action-value function as i → ∞. A
neural network representing a function approxima-
tor for Q with parameters θ, called a Q-network,
trains by minimizing the loss function:

Lt(θi) = Es,a∼µ(·)[(yi −Q(s, a; θi))
2]

where yi is the target at iteration i defined
as yi = Es′∼E [r + γmaxa′ Q(s′, a′; θi−1)|s, a],
µ(s, a) is the alternate, behavior distribution, and
θi−1 are the fixed parameters from the previous

iteration. Instead of computing full expectations,
DQN performs stochastic gradient descent on the
gradient of the loss function above. Updating the
weights at each timestep and using single sam-
ples from the behavior distribution µ yields the
famed Q-learning algorithm. Note that Q-learning
is model-free, since it doesn’t explicitly model the
environment, and off-policy, since it samples ex-
perience from a behavior policy µ instead of the
target policy π.

In previous work, most RL practitioners used
a linear combination of features to approximate
the Q function because neural networks have trou-
ble converging to the optimal function. Instead of
using an online network, DQN stabilizes conver-
gence using an experience replay, which stores all
of the agent’s experiences within a given environ-
ment for each timestep. Each interaction is denoted
as et = (st, at, rt, st+1) and the replay memory is
a dataset of interactions D = {e1, . . . , eN} over
many episodes. Each training iteration, DQN sam-
ples experiences from the replay and performs a
gradient update using an ε-greedy action selection
strategy. This strategy selects the greedy action
with probability (1 − ε) and selects a uniformly
random action with probability ε.

The DQN has several advantages compared to
standard Q-learning. In standard Q-learning, each
experience is only sampled once and subsequently
forgotten. DQN samples each episode multiple
times in order to learn as much as possible from
each sample; therefore, DQN is significantly more
data efficient. Standard Q-learning trains on se-
quential experiences which are highly correlated.
By sampling randomly from the experience replay,
the model breaks this correlation because it can
select non-sequential experiences. Learning off-
policy with the fixed previous parameters also helps
stabilize the training process to converge to a local
optimum.

2 Environments and Tasks

In order to properly learn, reinforcement learning
agents need to interact with real environments and
perform defined tasks. In this section, I describe a
few of the tasks used to evaluate the effectiveness
of trained agents.

2.1 Arcade Learning Environment (ALE)

DQN popularized the Arcade Learning Environ-
ment (Bellemare et al., 2013) (also called the Atari



environment) as a robust testbed for reinforcement
learning models. While DQN only evaluates on
seven popular games (Beam Rider, Breakout, En-
duro, Pong, Q*bert, Seaquest, and Space Invaders),
more recent systems evaluate using 57 different
Atari games.

Most systems evaluate the effectiveness of the
RL model on any particular game by comparing
the agent’s score to a human’s score. This can be
done in quite a few ways. One way would be to
directly compare the human-level raw score to the
agent’s raw score; however, different games have
different scoring mechanisms. For example, some
games have scores in the thousands while others
have top scores in the 10s. Additionally, some
games incrementally provide rewards while others
have large, infrequent reward structures.

Later methods use a human-normalized score,
which describes performance on a percentage level.
For example, if the median human obtains a score
of 100 and the agent obtains a score of 80, then
the human-normalized score would be 80%. In
addition to the human score, the agent’s score can
be compared to the score from a random policy and
the score from the optimal policy, which provide a
good baseline and upper bound respectively.

2.2 DeepMindLab-30 (DMLab-30)

More recently, DeepMind released a set of 30
unique environments to test the effectiveness and
generalizability of reinforcement learning agents
(Beattie et al., 2016). Each level has different vi-
sual elements, some being bright and colorful while
others are dark and gloomy. Each level has differ-
ent tasks. Some levels require the agent to bring
objects to a detector and others require the agent
to learn to throw objects towards buttons. Some
require the agent to act quickly while others require
significant long-term planning.

Another interesting difference between tasks is
the reward structure. Some tasks withhold rewards
for long strings of actions, so agents must explore
long sequences of actions before encountering any
rewards.

3 Distributed Training for RL

While the DQN baseline demonstrates that deep
reinforcement learning is possible, it is far from
optimal and requires significant compute power to
train. In this section, I present a timeline of systems
aimed at scaling deep reinforcement learning to

larger and more complex tasks through distributed
training.

3.1 GORILA

Nair et al. (2015) propose the General Reinforce-
ment Learning Architecture (GORILA) as one of
the first distributed system architectures for deep
reinforcement learning. GORILA is based on Dis-
tBelief (Dean et al., 2012), a distributed machine
learning framework developed by Google prior to
TensorFlow (Abadi et al., 2016). The GORILA sys-
tem architecture is segmented into four parts: the
actors, an experience replay memory, the learners,
and the parameter servers.

The actors are servers tasked with interacting
with a given environment E . In the case of GO-
RILA, there are Nact different processes all act-
ing on Nact instances of the same environment.
Each actor generates a set of experience trajectories
(si1, a

i
1, r

i
1, s

i
2, . . . , s

i
T , a

i
T , r

i
T ) with T timesteps

for actor i. Each actor has a replica of the cen-
tral Q-network, which is periodically synchronized
with the parameter servers.

The experience replay memory has two forms.
A local replay memory stores experience for each
actor on the actor’s own machine. In this case, sup-
pose the local memory is limited and can only hold
M experience trajectories. A global replay mem-
ory aggregates experience from all actors onto a
distributed database, which scales to meet memory
needs at the cost of more communication overhead.

The learners are in charge of calculating gradi-
ents based on minibatches of experience samples
from either the local or global experience replay
memories. Each of these learners applies an off-
policy RL algorithm (like DQN) from the parame-
ter server to calculate a gradient update vector gi.
The learners communicate these gradient updates
to the parameter server.

The parameter servers maintains a distributed
representation of the current Q-network parame-
ters. The parameter servers periodically receive
gradients from the learners and update the central
version of the Q-network using an asynchronous
stochastic gradient descent algorithm. Every so of-
ten, the parameter servers push the updated model
to both the actors and the learners in the system.

When using GORILA with the DQN algorithm,
the system is able to outperform DQN in the ALE
with half the training time. The improved perfor-
mance of GORILA DQN is attributed to the in-



creased number of states visited by Nact parallel
actors compared to just a single actor in vanilla
DQN.

3.2 A3C
Like GORILA, Mnih et al. (2016) propose an asyn-
chronous RL framework, but with a few key differ-
ences. First, rather than having separate machines
for actors, learners, and parameter servers, the au-
thors instead use multiple CPU threads on a sin-
gle machine. Second, they remove the experience
replay mechanism from the framework, which al-
lows on-policy training algorithms. Third, instead
of each actor interacting with the environment us-
ing the same policy, each actor uses a different
exploration policy. The use of multiple exploration
policies replaces the experience replay’s role in
stabilizing training.

Rather than just using Q-learning, the authors
investigate one-step Q-learning, one-step Sarsa,
n-step Q-learning, and advantage actor-critic in
their asynchronous RL framework proposed above.
Since the advantage actor-critic algorithm performs
best, I focus on this particular algorithm.

Asynchronous advantage actor-critic (A3C)
maintains a policy π(at|st; θ) and an estimate of
the value function V π(st; θv). The actor-critic op-
erates using a mix of n-step returns to update both
the value function and the policy. Every tmax ac-
tions (or terminal state), the algorithm performs an
update:

∇θ′ log π(at|st; θ′)A(st, at; θ, θv)

where A(·) is an estimate of the advantage func-
tion,

k−1∑
i=0

γirt+i + γkV (st+k; θv)− V (st; θv)

For their implementation, the authors add en-
tropy to the policy π in order to encourage further
exploration instead of early convergence at poor
local optima.

When evaluated on the ALE, A3C achieves sig-
nificantly better results compared to GORILA. Ad-
ditionally, A3C trains much faster than GORILA
and DQN, even though it uses CPUs instead of
multiple machines or GPUs. The authors attribute
A3C’s success to multiple actor-learners updating a
shared model, which has a stabilizing effect during
the learning process. By removing the experience

replay mechanism, their asynchronous RL frame-
work allows for on-policy algorithms to be used,
which is a significant contribution in the field.

3.3 IMPALA
Importance Weighted Actor-Learner Architecture
(IMPALA) (Espeholt et al., 2018) aims to tackle
training a single RL agent to perform well across
a large collection of tasks. While the A3C frame-
work is very successful at training a single agent
to solve a small set of tasks, the agent typically
needs to digest millions or billions of frames over
multiple days to master a single domain. This ap-
proach is not scalable to produce a single agent that
generalizes to a large collection of environments.

IMPALA adopts the actor-critic setup to learn
a policy π and a baseline value function approxi-
mation V π. IMPALA decouples the actors and the
learners. The actors keep track of a local policy
µ and interact with their own instance of the envi-
ronment. The learners continuously update their
policy π on batches of trajectories collected from
many actors. One notable difference is the learners
are updating parameters based on trajectories, not
pre-computed gradients (as in GORILA). At the
start of each trajectory, the actor updates its local
policy µ to match the learner’s policy π. Since
the learner’s policy is likely several updates ahead
of the experiences drawn from µ, there is a policy
lag between the actors and learners. IMPALA in-
troduces an off-policy correction algorithm called
V-trace to fix this discrepancy.

V-trace uses truncated importance sampling
weighting to approximate the state-value function
V (xs). Formally, the n-step V-trace target is de-
fined as:

vs = V (xs) +
t=s∑

s+n−1

γt−s(
t−1∏
i=s

ci)δtV

where δtV = ρt(rt + γV (xt+1) − V (xt))
is the temporal difference for V , and ρt =

min(ρ̄, π(at|xt)
µ(at|xt)) and ci = min(c̄, π(ai|xi)

µ(ai|xi)) are trun-
cated importance sampling weights. One use-
ful property is that for an on-policy case (where
π = µ), the n-step V-trace update reduces to the
n-step Bellman target. Thus, the authors can use
V-trace for both on-policy and off-policy learning.

Using IMPALA, the frame processing through-
put increases from 50k (A3C) to 250k (IMPALA).
The increased throughput allows IMPALA to be



trained on multiple tasks in a more reasonable
amount of time. When evaluated on the DMLab-
30 environment, IMPALA using a deep neural
network and population-based training (Jaderberg
et al., 2017) achieves a human-normalized average
score of 49.4%, which significantly outperforms
A3C (23.8%).

3.4 APE-X

APE-X (Horgan et al., 2018) extends the idea of
prioritized experience replay (Schaul et al., 2015)
to a distributed setting. The APE-X framework
again decouples actors from learners and uses an
experience replay prioritized using a scalar value
for each experience.

The actors, which can be distributed across mul-
tiple machines, each have their own policy and in-
stance of the environment. The actors interact with
the environment and generate experience trajecto-
ries. Rather than arbitrarily setting the priority for a
trajectory in the experience replay, APE-X requires
the actor to come up with an appropriate priority
for each trajectory. Both the priority and trajectory
are communicated to the experience replay.

The learner continuously samples experiences
from the experience replay, selecting higher pri-
ority experiences first. Once sampled, the learner
updates the priority of each experience using the
obtained gradient update. Typically, when an ex-
perience is sampled, the priority decreases because
the relative usefulness of experience decays the
more it is used. Every so often, the learner commu-
nicates updated network parameters to the actors.
Note that in theory, the learners can be distributed
across multiple machines; however, the authors
choose to only distribute the actors, keeping both
the replay and the learner centralized.

When evaluated on the Arcade Learning Envi-
ronment, APE-X DQN and APE-X DPG (Silver
et al., 2014) (two instances of APE-X using differ-
ent learning algorithms) both outperform previous
methods and decrease training time. The training
time of APE-X also decreases as the number of
actors increases, likely due to more exploration and
better quality experiences. The authors hypothesize
the success is due to important experiences being
sampled more often than extraneous experiences.

3.5 R2D3

Recurrent Replay Distributed DQN from Demon-
strations (R2D3) (Paine et al., 2019) attempts to

tackle three difficult problems in RL: (1) sparse re-
wards that require long sequences of actions before
receiving a reward; (2) partial observability, where
the agent only observes a part of the environment at
each timestep; and (3) highly variable initial condi-
tions, where different initializations can drastically
affect model performance. In contrast to previous
methods, R2D3 attempts to learn from demonstra-
tions, or experience provided ahead of time to the
system (like recordings of human gameplay).

The R2D3 system runs several actor processes,
each with a separate agent policy and instance of
the environment. The actors record trajectories and
initial priorities into an agent replay buffer, just
like in the APE-X framework. R2D3 also has a pri-
oritized demo buffer, which contains a prioritized
list of demonstrations the system can also replay. A
central learner process samples batches of experi-
ences from both the agent and demo replay buffers
proportional to a hyperparameter ρ. For a batch of
size B, the learner samples ρB experiences from
the demo replay and (1 − ρ)B experiences from
the agent replay. The learner uses n-step double
Q-learning (Hasselt, 2010) and a dueling architec-
ture (Wang et al., 2016). The learner periodically
pushes updated model parameters to each of the
actor processes.

The authors propose a test suite of 8 tasks
(dubbed the “Hard-Eight”) specifically designed
to have sparse rewards, partial observability, and
highly variable initial conditions. Previous models
evaluated on this test suite are unable to obtain any
reward, failing the tasks outright.

When evaluating R2D3 on this suite, the agent is
able to learn and conquer six of the eight tasks. To
do this, the agent effectively learns from the expert
demonstrations provided and, in some tasks, learns
a series of actions better than the human experts.

4 Other Training Regimes

In this section, I describe other important systems
and training algorithms that are not necessarily dis-
tributed in nature, but still improve the state-of-the-
art reinforcement learning methods.

4.1 Rainbow

Rainbow (Hessel et al., 2017) examines 6 different
extensions to the DQN algorithm and analyzes their
relative importance. The six extensions included
in this study are Double DQN (van Hasselt et al.,
2015), prioritized experience replay (Schaul et al.,



2015), the dueling network architecture (Wang
et al., 2016), multi-step learning (Sutton and Barto,
1998), distributional Q-learning (Bellemare et al.,
2017), and noisy nets (Fortunato et al., 2017). The
authors combine each of these improvements into
a single model dubbed Rainbow and perform an
extensive ablation study.

The Double DQN (DDQN) addresses overesti-
mation bias in Q-learning by decoupling selection
and evaluation of the bootstrapped action. Prior-
itized experience replay improves data efficiency
by replaying useful transitions more often. The
dueling network architecture helps generalize the
model’s understanding across similar states. Multi-
step learning propagates rewards to earlier states
faster and provides a way to shift the bias-variance
trade-off. Distributional Q-learning learns a dis-
tribution of returns rather than estimating a single
scalar value. Noisy DQN (noisy nets) uses stochas-
tic network layers to support more robust explo-
ration.

By combining each of these improvements into
a single model, Rainbow significantly outperforms
each individual model on the Arcade Learning En-
vironment. By ablating each of the features in Rain-
bow, the authors are able to identify the relative
importance of each. The authors identify that pri-
oritized experience replay and multi-step learning
are the two most crucial components in Rainbow,
leading to significant performance drops when re-
moved. The next most important component is
distributional Q-learning, which lags behind Rain-
bow as training continues past 50M frames when
removed. For noisy nets, the model performance
dips slightly, but does not drop nearly as much as
features like prioritized replay. The two least im-
portant features in Rainbow are DDQN and the
dueling network architecture, which do not lead to
significant performance differences when ablated.

4.2 Population-based Training

Population-based Training (PBT) (Jaderberg et al.,
2017) is an asynchronous optimization algorithm
aimed at achieving optimal model performance in
addition to well-tuned hyperparameters. Notably,
PBT can discover a schedule for hyperparameters,
rather than simply finding optimal values.

First, the authors define a function eval that
evaluates an objective function on a model with
parameters θ. The optimal set of parameters would
thus be:

θ∗ = arg max
θ∈Θ

eval(θ)

The authors also define an iterative step func-
tion step to update the parameters of the model
conditioned on some hyperparameters h ∈ H,

θt+1 ← step(θt|ht)
In total, the optimization function is

step(step(...step(θ|h1) . . . |hT−1)|hT )

The above only evaluates the parameters with
respect to a specific set of hyperparameters. The
authors identify well-tuned hyperparameters by op-
timizing many models using different sets of hy-
perparameters. The authors define a population P
containingN models {θi}Ni=1 using different hyper-
parameters {hi}Ni=1. The goal is to find the optimal
parameters among the models in the population.

Each worker in the population optimizes its
parameters given its hyperparameters using the
step function asynchronously until the worker is
deemed “ready.” At this point, the worker can call
one of two methods: exploit gives the worker the
option to copy the parameters and hyperparameters
from the best-performing worker in the population;
explore randomly perturbs the hyperparameters
with some noise. Note that the specific implementa-
tion of exploit and explore can be replaced with
an application-specific definition. Similarly, the fre-
quency a worker stochastically calling exploit or
explore can also be set by the application.

For the purposes of this study, one implementa-
tion of exploit randomly samples another worker
from the population and copies the higher perform-
ing parameters. Another potential implementation
could be to stochastically copy the current best-
performing parameters in the population or do noth-
ing. One common implementation of explore

used in the study multiplies each hyperparameter
by a random number in the range [0.8, 1.2] to alter
the value slightly.

When applied to real domains like DeepMind
Lab, Atari, and StarCraft II, PBT increases final
agent performance. In most applications, PBT
identifies hyperparameter schedules that are signifi-
cantly better than human hand-tuned schedules. An
interesting point the authors make is that PBT oc-
casionally learns complicated schedules that match
well-studied, hand-crafted hyperparameter sched-
ules.



5 Applications of Distributed Training

The algorithms described in Sections 3 and 4 may
seem abstract; however, they have led to significant
advances in real reinforcement learning applica-
tions. When evaluated on many different games, re-
inforcement learning models achieve superhuman
performance across a variety of tasks. In this sec-
tion, I discuss some of the applications RL agents
have conquered to date.

5.1 AlphaGo

The game of Go has long been described as one
of the most complex and difficult games for AI to
tackle. Go has an enormous search space on the
order of 10170 and requires being very long-term
goal-oriented. AlphaGo (Silver et al., 2016) is a
reinforcement learning agent that approaches Go
using a value network to evaluate board positions
and a policy network to select moves.

The authors use a combination of supervised
learning and self-play to teach AlphaGo how to
play. Initially, the agent has no idea how to effec-
tively play the game, so self-play would require an
enormous amount of training to reach even begin-
ner level. Instead, AlphaGo looks through previous
games played by experts and attempts to mimic
their moves using supervised learning. Using this
approach, AlphaGo is able to reach a reasonable
starting point before attempting to learn on its own.

AlphaGo then learns to update its policy and
value function by playing against itself millions of
times. During training, AlphaGo uses Monte-Carlo
tree search (MCTS) to identify actions leading to
boards with positive outcomes. At inference time,
AlphaGo fuses the policy and value networks with
a Monte-Carlo tree search algorithm where each
edge stores an action value, a visit count, and a
prior probability. The tree is traversed using simu-
lation starting from the current root state. At each
timestep, the agent selects an action from a state
that maximizes the sum of the action-value function
and a special bonus inversely proportional to how
frequently the successor state is seen (to encourage
robust exploration).

Performing this traversal requires significant
computation overhead, so AlphaGo uses asyn-
chronous multi-threaded search where simulations
are executed on CPUs and neural network evalu-
ation is executed on GPUs. The authors also im-
plement a distributed version of AlphaGo, which
exploits significantly more compute power across

many machines.
When compared to other Go programs like Crazy

Stone (Coulom, 2006), Zen, Fuego (Enzenberger
et al., 2010), and Pachi (Baudiš and Gailly, 2012),
AlphaGo performs extraordinarily well, winning
494/495 games (99.8% win rate). Even after hand-
icapping AlphaGo by giving the opponent 4 free
moves, AlphaGo still wins 77%, 86%, and 99%
of the time against Crazy Stone, Zen, and Pachi
respectively. The distributed version of AlphaGo is
even stronger, defeating single computer AlphaGo
in 77% of games.

In 2015, AlphaGo competed against Fan Hui,
the European Go champion, and won 5 to 0 in a
five game match.

5.2 AlphaZero

While AlphaGo achieved superhuman performance,
it was later succeeded by a more robust AlphaGo
Zero (Silver et al., 2017b) which achieved bet-
ter performance without human demonstrations by
playing against the original AlphaGo. However,
both AlphaGo and AlphaGo Zero are agents solely
trained for Go.

The goal of AlphaZero (Silver et al., 2017a) is to
achieve superhuman performance across many dif-
ferent domains. Specifically, AlphaZero achieves
superhuman performance on chess, shogi (Japanese
chess), and Go, all with significantly less training
compared to previous programs.

AlphaZero uses deep neural networks to model
a reinforcement learning algorithm with no priors
(commonly referred to as “tabula rasa”). Similar to
AlphaGo Zero, the AlphaZero network models a
policy function to select actions and a state-value
function to estimate the favorability of being in a
particular position. In contrast to AlphaGo, Alp-
haZero learns its policy and value function purely
from self-play as opposed to supervised learning.
AlphaZero uses Monte-Carlo tree search (MCTS)
to consider multiple trajectories of play. The train-
ing process updates the network parameters in or-
der to minimize the error between the predicted
outcome at any given state and the actual game out-
come. AlphaZero performs gradient descent over
a loss function that sums the mean-squared error
and cross-entropy loss for the value function and
policy respectively.

While AlphaGo Zero estimates the probability
of winning as a binary win/loss, AlphaZero ac-
counts for other potential outcomes, like draws in



the game of chess. AlphaGo Zero also augments
its training data using 8 symmetric forms of the
same board (since boards can be translated in Go).
Instead, AlphaZero uses the raw board and does not
transform or augment the board positions during
MCTS.

Training for AlphaZero happens in a tournament-
like fashion. A challenger plays against the best
player for a series of rounds. If the challenger wins
more than 55% of games against the best player, the
challenger becomes the best player. This process
continues until a player can no longer be bested
(ideally close to the optimal solution). One note
is that AlphaZero trains on an enormous amount
of compute power: 5,000 TPUs for 700,000 steps
with minibatches of size 4,096!

That said, AlphaZero is extraordinarily suc-
cessful, surpassing AlphaGo Zero (Go), Stockfish
(chess), and Elmo (shogi) with comparably less
training. The authors also show that AlphaZero
is robust across initializations, besting Stockfish
using multiple different popular chess openings.

5.3 OpenAI Five

While chess and Go are extraordinarily complex
games, they are nothing compared to the video
games played across the world today. In that spirit,
OpenAI decided to take AI to the next level by
creating OpenAI Five (OpenAI et al., 2019), a re-
inforcement learning agent for Dota 2, a complex,
popular online video game. Video games of this
level are particularly challenging due to extremely
high-dimensional observation and action spaces,
partial observability, and incredibly long time hori-
zons (each game lasts around 45 minutes).

OpenAI Five supports a subset of playable
“heroes” within the Dota 2 game. Instead of tak-
ing in the pixels on the screen, the agent uses an
imperfect approximation and takes in a set of data
arrays describing the current game state. From
these observations, a core 4096-unit LSTM is able
to model policy outputs, namely the actions and a
value function.

The agent is trained using Proximal Policy Op-
timization (Schulman et al., 2017) with General-
ized Advantage Estimation (GAE) (Schulman et al.,
2015). The policy training uses collected self-play
experience to learn from experienced actions. The
agent with the latest policy plays against itself 80%
of the time and against previous versions 20% of
the time.

One of the most interesting parts about using RL
agents on games like Dota 2 is the game constantly
evolves through updates, patches, and bug fixes.
Thus, every two weeks or so, the game environ-
ment is altered, potentially significantly. In order
to use agents trained on previous environments, the
authors introduce the idea of surgery. The goal of
surgery is to transfer as much of the knowledge
from the old agent into a new agent compatible
with the updated environment. Over the ten month
lifetime of OpenAI Five, the authors perform over
twenty surgeries (successful and unsuccessful) to
avoid unnecessarily re-training a new agent from
scratch.

In April 2019, OpenAI Five competed against
Team OG, the reigning Dota 2 world champions,
and defeated them 2-0 in best-of-three match. Af-
terwards, OpenAI ran OpenAI Five Arena, where
the public was able to play against OpenAI Five
for three days. In total, OpenAI Five dominated,
winning 99.4% of the thousands of games played.

5.4 AlphaStar

Concurrent to OpenAI Five, the team at Google
DeepMind tackled the game of StarCraft II us-
ing deep reinforcement learning. The proposed
agent AlphaStar (Vinyals et al., 2019) hoped to
achieve superhuman performance without using
hand-crafted subsystems, game simplifications, or
unfair advantages. For example, StarCraft II play-
ers have a minimum reaction time of a few hun-
dred milliseconds. Instead of making instantaneous
moves, AlphaStar uses network latencies, computa-
tion time, and maximum actions-per-minute (APM)
limitations to mimic input delay.

AlphaStar uses a combination of supervised
learning and reinforcement learning during training.
Each agent is initialized using supervised learn-
ing from a sampled set of human replays where
the agent learns to play like the human. After be-
ing exposed to various human strategies, the agent
uses self-play reinforcement learning to build on
the baseline’s performance. The algorithm itself
is based on advantage actor-critic and uses an off-
policy approach to learn from experience generated
by previous policies.

During training, an agent plays against either
a version of itself (main agents), an agent that is
trained to exploit weaknesses in main agents (main
exploiter agents), or an agent trained to exploit
weaknesses in agents across the league (league ex-



ploiter agents). Each agent trains over the course
of 44 days using 32 third-generation TPUs to reach
grandmaster level.

In December 2018 and January 2019, AlphaStar
defeated two top professional StarCraft II players,
winning each match 5-0.

6 Conclusion

In this paper, I discuss many techniques to tackle
distributed training for reinforcement learning. I
describe a timeline of advancements built on top
of one another allowing current RL methods to
flourish. I finally take the knowledge from theory
and discuss real-world agents built using the ad-
vancements in distributed RL to defeat humans in
complex games like Go and StarCraft II.
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