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Abstract

Open-domain question answering is a chal-
lenging and fast-moving task in the field of
natural language processing. This paper pro-
vides an in-depth introduction to the problem
space, including relevant background knowl-
edge. I summarize common datasets and meth-
ods used to evaluate model effectiveness. With
a solid foundation, I continue by outlining nu-
merous state-of-the-art approaches proposed
by the NLP community to solve the problem.
I conclude with discussion about areas for fu-
ture work.

1 Introduction and Problem Space

Open-domain question answering (Open-QA)
arose from years of work in the field of question
answering. Here, I discuss the origins of the task
and gradually build up a formal definition of the
problem space.

1.1 Question Answering Task

The task of question answering (QA) is the follow-
ing: given a question q composed of a sequence
of word (or sub-word) tokens, predict the answer
a. For example, if the question is “What is the
smallest penguin species in the world,” then the
corresponding answer would be “the fairy penguin.”
Across questions, answers can take various forms
including a sequence of tokens (like the previous
example), true/false booleans, numbers, or even the
lack of an answer (further referred to as the null
answer). For most of this survey, I consider ex-
tractive QA, where the system predicts a substring
within a greater knowledge source (e.g. Wikipedia)
that answers the question.

1.2 Reading Comprehension Task

One way to format a QA task is through reading
comprehension (RC), similar to standardized tests

like the SAT and the GRE. The model reads a se-
quence of tokens containing relevant information,
called a context paragraph, and predicts the answer
to a given question.

More formally, I define the context document d
as a sequence of Ld word tokens: {di}Ld

i=1. Given a
question of length Lq defined as q = {qi}

Lq

i=1, the
goal is to predict an answer string a of length La

defined as {ai}La
i=1. For the problem of extractive

QA, a would be a substring of d, denoted as a ⊆ d.

1.3 Open-Domain Question Answering Task

Reading comprehension provides a single docu-
ment to the model for each question-answer pair.
Open-QA makes the problem more challenging by
withholding the context document. Instead, the
model has access to a very large set of documents
on a wide range of topics. For each question, the
model needs to search through the large corpus of
information, composed of both relevant and irrele-
vant documents, to identify the correct answer.

This makes the task significantly more difficult
because the model needs to sift through thousands
of documents in the knowledge source (commonly
Wikipedia), identify the relevant ones, and accu-
rately read the retrieved documents to find the cor-
rect answer.

More formally, the model has access to
a large collection of ND documents, D =
{D1, D2, . . . , DND

}. For a question-answer pair
(q, a), the goal is for the model to take in a question
q and search through D to predict the answer a.

2 Background Knowledge

Many proposed solutions to Open-QA build off
of previous milestones from the NLP community.
Specifically, one system that dramatically changed
the landscape of Open-QA is BERT (Devlin et al.,
2019).



Previous embedding methods like word2vec
(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014) use static word embeddings, which have is-
sues with words that vary meaning depending on
context like “bank” or “play.” To better capture con-
text, many autoregressive (unidirectional) encoders
like ELMo (Peters et al., 2018) provide different
representations dependent on surrounding context.
Although a step in the right direction, autoregres-
sive models still do not utilize bidirectional context,
which can capture richer word embeddings.

From these imperfections came Bidirectional
Encoder Representations from Transformers, com-
monly known as BERT (Devlin et al., 2019). BERT
uses a fully bidirectional context when encoding
words, which is superior to one or two unidirec-
tional contexts. BERT is also based on Transform-
ers (Vaswani et al., 2017), which use a multi-head
self-attention mechanism to capture long-term de-
pendencies.

In order to use the fully bidirectional context,
BERT considers two different unsupervised train-
ing objectives. The first and more impactful task
is called Masked Language Modeling (MLM). For
this task, BERT replaces 15% of words in the cor-
pus with a special [MASK] token. The goal is
for BERT to predict the original word whenever it
encounters a [MASK] token.

The second training objective is called Next Sen-
tence Prediction (NSP). BERT samples two sen-
tences from the corpus and predicts whether the
second sentence follows the first. For each sen-
tence pair BERT processes, it prepends a special
[CLS] token and separates the two sentences using
a special [SEP] token.

To obtain a sentence representation, most models
use the BERT [CLS] token representation. That
is, given a sentence S encoded as [CLS]S [SEP ],
the model takes the embedding of the [CLS] token
as the embedding of the entire sentence.

After pre-training, BERT can be applied to a
downstream task, gradually improving embeddings
towards a domain-specific task through an addi-
tional training process called fine-tuning. In most
cases, using BERT to solve a downstream task in-
volves adding a single layer on top of the BERT
model. For example, if the task is classification,
the top layer takes in an input representation from
BERT and make a prediction over the possible la-
bels.

In the case of question answering, BERT takes

the sequence of tokens in the context paragraph and
predicts two token-level probability distributions:
one for whether the word is the start token in the
answer span (Prs), and one for whether the word is
the end token of the answer span (Pre). From these
distributions, BERT selects the highest probability
span with score Spred for indices start and end
where,

Spred = argmax
start,end

Prs(wstart)× Pre(wend)

and start ≤ end. Note that enumerating every
span within a large context to calculate a proba-
bility score is computationally expensive, so many
systems constrain the length of context paragraphs.

3 Datasets

Open-QA is evaluated across many different
datasets with various properties. Below I describe
the most commonly referenced datasets for the
task.

3.1 Stanford Question Answering Dataset
(SQuAD)

The Stanford Question Answering Dataset
(SQuAD) v1.1 (Rajpurkar et al., 2016) contains
around 100k QA examples. Each question-answer
pair has an associated context paragraph from
Wikipedia, where each answer is a span within the
context. The model must predict the answer span
within the context paragraph.

The authors created SQuAD by presenting a
paragraph from one of 536 Wikipedia articles to
crowdsourced workers and asking them to propose
a question that can be answered using the provided
context. The workers then annotate the correct
answer span within the paragraph.

When evaluating a model on SQuAD for Open-
QA, most models use “SQuAD-open,” where the
model evaluates the development set without be-
ing provided the context paragraph, as proposed in
(Chen et al., 2017). Instead of reading through the
context paragraph, the model searches through all
of Wikipedia to find the correct answer span.

More recently, Rajpurkar et al. (2018) released
SQuAD v2.0, which adds an additional 50k ex-
amples to SQuAD and introduces unanswerable
questions (i.e. questions with the null answer).



3.2 Natural Questions (NQ)

Natural Questions (NQ) (Kwiatkowski et al., 2019)
is a QA dataset with around 325k examples gath-
ered from a pool of Google search queries. Each
question has an associated evidence document, a
long answer (typically a paragraph), and a short
answer (one or more entities within the long an-
swer), with the possibility of there being no answer
(null).

To generate the dataset, the authors gathered
popular search queries matching a set of valid ques-
tion criteria. The authors then find Wikipedia ar-
ticles within the top search results for the query
and present them to a crowdsourced worker. The
annotator identifies a long answer and a short an-
swer, or indicates there is no answer (null). For
the development and test data, the authors ensure
quality by having 5 different workers annotate each
question.

Interestingly, the query may not actually be in
the form of a question. For example, it could be a
“complete the sentence” query, like “the smallest
penguin species,” or it could be ungrammatical, like
“actress in the girl with the dragon tattoo swedish.”
Some Natural Questions examples have ambiguous
acceptance criteria, leading to new datasets and
tasks like AmbigQA (Min et al., 2020).

Most Open-QA models evaluate on Natural
Question Open (NQ-open) (Lee et al., 2019), which
only keeps questions with non-null short answers
less than 5 tokens and withholds the given evidence
document.

3.3 HotpotQA

HotpotQA (Yang et al., 2018) is a multi-hop ques-
tion answering dataset with 113k Wikipedia-based
QA pairs. Each pair has a question that requires
finding and reasoning over multiple supporting doc-
uments. This means that rather than only looking
at a single document to find the answer, the model
must retrieve multiple documents and combine the
knowledge provided by each to predict the answer
for each question.

HotpotQA is sourced using a very specific
pipeline. First, the authors construct a Wikipedia
graph using hyperlinks as edges between first para-
graphs in each article. The authors then manually
define a set of valid bridge-entity articles that can
be used to create clear multi-hop questions. To
generate each example, a crowdsourced worker is
provided a randomly sampled bridge-entity article

as well as a paragraph linking to it on the Wikipedia
graph. The worker then asks a question based on
the two paragraphs and labels the correct answer.

Each example has a question-answer pair, two
context paragraphs from potentially different docu-
ments, and two annotated sentences to support the
answer (called supporting facts). Each supporting
fact is labelled by the crowdsourced worker within
the context paragraphs. Notably, each question-
answer pair has exactly two context paragraphs
rather than an arbitrary amount of context para-
graphs.

4 Evaluation Metrics

In order to make progress on Open-QA, the field
needs to define success on a given dataset. Below, I
describe different types of evaluation for Open-QA.

Exact Match (EM) The Exact Match (EM) met-
ric directly compares the final predicted answer â
to the gold answer a and checks word-for-word
equality. This helps evaluate the overall, end-to-
end correctness of the model.

Note a model can still receive EM credit for
predicting the correct answer using invalid or in-
accurate supporting evidence, so a high EM score
does not guarantee perfect model understanding.

F1-Score The F1-score measures the approxi-
mate overlap between the predicted answer and
the ground truth answer. The score treats both
the predicted answer and the gold answer as bag-
of-words vectors to calculate precision and recall.
Precision is the number of words in both the pre-
dicted answer and the gold answer, divided by the
length of the predicted answer. Recall is the same
numerator divided by the length of the gold answer.
The F1-score is defined as:

F1 =
2 · Precision ·Recall
Precision+Recall

5 Neural Baseline Models

Prior to 2017, solutions to Open-QA were extraor-
dinarily complex, using tons of hand-crafted fea-
tures and an amalgam of different subsystems. In
this section, I discuss DrQA (Chen et al., 2017),
the first successful neural Open-QA system many
subsequent models use as their foundation. I then
touch on a few additional features that are stan-
dard in more recent systems. Finally, I present a
stronger, more recent baseline, BERTserini (Yang
et al., 2019).



5.1 DrQA: First neural retrieval-reader

Chen et al. (2017) revitalized the Open-QA commu-
nity with their release of DrQA, the first successful
neural approach to the problem. The authors lever-
age a 2016 dump of Wikipedia as their source of
knowledge. DrQA is composed of two components
pipelined together: a DocumentRetriever that picks
the top-k most relevant documents from Wikipedia
and a DocumentReader that finds the best answer
within the top-k documents.

The DocumentRetriever component picks the
top-k documents using a heuristic search with Term
Frequency Inverse Document Frequency (TF-IDF)
scoring over bag-of-words vectors. The authors
take local word order into account by using efficient
bigram hashing from Weinberger et al. (2009) as
features for their TF-IDF score.

The DocumentReader component consists of a
2-layer bidirectional LSTM for paragraph represen-
tations and a second recurrent neural network for
question representations, both using GloVe (Pen-
nington et al., 2014) word embeddings. Consider
a single paragraph pi composed of a series of N
tokens {pj}Nj=1. DrQA computes the paragraph
embedding as:

{p1, . . . ,pN} = LSTMPAR({p̃j}Nj=1)

where LSTMPAR is the 2-layer bidirectional
LSTM paragraph encoder and p̃i is a concatenation
of 300 dimensional GloVe word embeddings with
a few handcrafted features.

At inference time, the DocumentReader gener-
ates a question embedding by passing the corre-
sponding GloVe word embeddings through a sec-
ond recurrent neural network. Using both the top-k
paragraphs and the question embeddings, the Doc-
umentReader computes probability distributions
for the start and end indices of the answer span
(likely inspiring BERT). DocumentReader returns
the highest scoring P (start)×P (end) probability
where start ≤ end ≤ start + 15, ensuring the
answer span is less than 15 tokens.

DrQA contributed a simple, neural, 2-stage
pipeline that performs comparably with previous,
hand-crafted, complex systems. Still today, 2-stage
retriever-reader models are the de facto method for
solving Open-QA.

5.2 Natural Extensions

Since DrQA, there are a few additional features
common in more recent models: reader document
re-ranking, newer document retrieval heuristics,
and the replacement of LSTM-based models with
BERT.

Reader Document Re-ranking In some models,
the reader treats all documents received from the re-
triever equally; however, some documents are more
or less likely to contain the answer according to
their TF-IDF score. The reader can incorporate the
retriever’s scoring into its own overall score, bet-
ter utilizing the retriever as a guide for prioritizing
paragraphs.

Similarly, the reader can re-rank all of the re-
trieved documents using its own heuristic. Suppose
the reader learns that lexical overlap with certain
words is more important than TF-IDF ranking. In
this scenario, the reader can incorporate this infor-
mation with the retrieval score to better prioritize
the retrieved documents.

Recent Document Retrieval Heuristics In
DrQA, the DocumentRetriever uses simple TF-IDF
scoring on bag-of-words vectors. More recently,
Best Match 25 (BM25) is the default method to
determine word-level similarity, outperforming TF-
IDF in most systems. Although the two meth-
ods are very similar, BM25 weights the TF score
asymptotically and uses the document length to
better determine how relevant the document is.

Recent Document Reader using BERT Since
the introduction of BERT, the Open-QA commu-
nity shifted from LSTM-based models in favor of
BERT models. BERT learns rich contextual in-
formation during pre-training and better captures
long-term dependencies with the Transformer’s su-
perior self-attention mechanism. In almost all sys-
tems proposed today, documents are encoded us-
ing BERT’s [CLS] token representation instead of
LSTMs.

5.3 BERTserini: Recent neural baseline

After taking DrQA, updating the DocumentRe-
triever and DocumentReader modules with more
recent components, and changing the name, the
model becomes BERTserini (Yang et al., 2019).
The system is based on the same retriever-reader
model as DrQA, but uses the updated features men-
tioned above.



Specifically, it uses an Anserini (a BM25 imple-
mentation) document retriever with a BERT reader
model fine-tuned on SQuAD for QA. For recent
work, BERTserini is a much more challenging and
accurate baseline compared to DrQA, although the
general structure is very similar.

6 Different Directions

From the baselines, the NLP community proposed
many different directions to tackle Open-QA. In
this section, I discuss many of them, along with
examples of models that fall into each category.

6.1 General Pre-trained Models

General pre-trained models like GPT-2 (Radford
et al., 2019) and T5 (Raffel et al., 2019) have been
applied to Open-QA datasets and performed de-
cently. Even though they aren’t specifically created
to solve Open-QA, their parameters house a signif-
icant amount of information from their respective
pre-training tasks. As expected, the more parame-
ters packed into a model, the more information the
model is able to retain.

That said, Raffel et al. (2019) demonstrate this
approach has diminishing returns. On the Natural
Questions dataset, increasing the number of param-
eters in T5 from 3 billion to 11 billion only im-
proves the test score from 32.1% to 34.5%. That’s
an increase in 8 billion (!!) parameters for a task
improvement of only 2.4%. To put this in perspec-
tive, BERT-base has 110M parameters, so adding 8
billion parameters is equivalent to adding 73 BERT-
base models!

6.2 Novel Pre-training Tasks

Many recent approaches introduce a novel pre-
training task for their model to train on prior to
fine-tuning and evaluation. Three notable exam-
ple of this type of direction are ORQA (Lee et al.,
2019), REALM (Guu et al., 2020), and Hard-EM
(Min et al., 2019a).

ORQA: Inverse-Cloze Task Pre-training Lee
et al. (2019) propose ORQA, an end-to-end
retriever-reader model trained jointly on an Inverse
Cloze Task (ICT).

The authors segment each Wikipedia article into
smaller evidence blocks. ORQA’s retriever consists
of two BERT models, one for encoding evidence
blocks, BERTB , and one for encoding the ques-
tion, BERTQ. The retrieval score is defined as

the inner product between the BERT [CLS] repre-
sentations of the question and the evidence block.
The top-k scoring evidence blocks are passed to
the reader.

ORQA’s reader uses a third BERT model,
BERTR, that identifies the best answer span in
each of the top-k evidence blocks using the classic
DrQA and BERT-style QA prediction. The reader
creates two probability distributions over the evi-
dence for the start and end token indices and defines
a span’s score as the product between the start and
end token probabilities.

ORQA’s primary contribution is the ICT pre-
training task. In this setup, the retrieval model
samples a sentence from a random evidence block
and removes it 90% of the time. Given a set of can-
didate evidence blocks, the goal is to identify the
block associated with the sampled sentence. Note
that 10% of the time, the sentence is not removed
from the evidence block, making the problem triv-
ial. The removal (90%) ensures the model picks up
semantic meaning while the remaining examples
(10%) allows the model to learn the importance of
lexical overlap as a feature.

After the ICT pre-training task, the authors
freeze the weights for BERTB and pre-compute a
large index over the evidence blocks using Locality
Sensitive Hashing for quick maximum inner prod-
uct lookups. ORQA fine-tunes on a given dataset,
further improving BERTQ and BERTR for the
downstream task. To encourage more training of
BERTQ, they include an additional loss term by
looking for exact answer matches within the top-c
context documents, where c� k by a few orders
of magnitude.

ORQA performs well on datasets like Natural
Questions, but does not achieve state-of-the-art per-
formance on SQuAD. The authors offer an expla-
nation that SQuAD questions are written given the
Wikipedia context, creating a bias where questions
have high lexical overlap with the evidence. Addi-
tionally, contexts are sampled from only 536 docu-
ments, which biases the retrieved articles towards
a small subset of Wikipedia. From the results, sys-
tems using BM25 and TF-IDF scoring generally
overperform on datasets like SQuAD due to these
biases.

REALM: Retrieval-Augmented Language
Model Guu et al. (2020) build on ORQA and
propose Retrieval-Augmented Language Model
pre-training (REALM). The REALM model is



composed of 2 modules, a Neural Knowledge
Retriever and a Knowledge-Augmented Encoder.

The Neural Knowledge Retriever encodes both
the document and the question using two BERT
models, denoted here as BERTdoc and BERTq
respectively. The retriever computes a relevance
score using the inner product between the BERT
[CLS] representations of the document and the
question after being projected into a lower dimen-
sional vector space.

The Knowledge-Augmented Encoder uses a
third BERT model for RC, denoted here as
BERTread, to encode the question and the associ-
ated context paragraph concatenated together. In
a BERT-like fashion, the Knowledge-Augmented
Encoder predicts the start and end indices of the
answer span within the question-document pair.

REALM’s end-to-end pre-training task begins
by sampling a sentence from Wikipedia and mask-
ing a token (like MLM). The Neural Knowledge
Retriever reads the sentence and retrieves relevant
documents. The Knowledge-Augmented Encoder
receives the masked sentence along with the top-
k retrieved documents and predicts the original
masked word. REALM uses ICT pre-training as a
warmup prior to REALM pre-training.

One difficulty in this model is computing the
probability distribution for the answer given the
question, denoted

Pr(a|q) =
∑
d∈D

Pr(a|q, d)Pr(d|q)

where a is the answer string, D is the set of all
available documents, and q is the input question.
The authors solve this by using a maximum in-
ner product search (MIPS) index to approximately
search for top-k documents efficiently; however,
each time the parameters update, the index be-
comes stale. To fix this, the authors continuously
“refresh” the index using the new, updated parame-
ters after a set number of timesteps.

In addition to the ICT warm-up and the modi-
fied MLM task, the REALM model includes other
small modifications to improve performance. The
authors use salient span masking, where the model
selects particularly important spans when masking
sentences. The retriever also removes the document
containing the masked sentence from the retrieved
documents to avoid trivial solutions. Finally, some
questions require no world knowledge to predict,
so the retriever has the option to return an empty

null document. After training, the REALM model
fine-tunes in a supervised fashion on downstream
datasets.

REALM performs exceedingly well, building on
ORQA’s results on NQ-Open. An interesting point
the authors note is that a faster refresh rate of the
MIPS index leads to better results, at the expense
of more compute power.

Hard-EM: Hard-EM Training Loss Min et al.
(2019a) propose Hard-EM, a BM25+BERT model
that alters the frequently used maximum marginal
likelihood (MML) loss function with a novel pa-
rameter update called Hard-EM. Specifically, the
authors replace the MML loss,

JMML(θ|x, Z) = − log
∑
zi∈Z

P (zi|x; θ)

where Z is the candidate set of all possible solu-
tions, with their novel loss function,

JHard(θ|x, Z) = −max
zi∈Z

logPr(zi|x; θ)

The Hard-EM model pre-computes the top-k
scoring paragraphs from Wikipedia using BM25.
Using their training objective, the authors fine-tune
a BERT model for QA to find the most likely span
within the top-k scoring paragraphs.

The authors argue that the MML loss may assign
high probabilities to spurious, incorrect answers
candidates. Rather than reinforce all of the candi-
dates, the Hard-EM loss function only reinforces
the top-scoring candidate (by replacing the

∑
with

a max).
Although simple in concept, the BM25+BERT

model trained with the Hard-EM loss performs 2-
3% better than the same model trained with the
MML loss.

6.3 Multi-hop Question Answering

Multi-hop QA focuses on question-answer pairs
requiring reasoning across multiple context doc-
uments. Multi-hop QA complicates the retriever
because the model may need to retrieve multiple
documents about different topics, not necessarily
lexically relevant to the question. It also compli-
cates the reader, which needs to understand a group
of documents instead of reading a single document.



PathRetriever Asai et al. (2020) propose
PathRetriever, a retriever-reader model, to reason
through multi-hop question-answer pairs. Instead
of operating on paragraphs, PathRetriever consid-
ers reasoning paths, or a series of paragraphs logi-
cally connected that together reveal the final answer.
The authors consider a Wikipedia graph where each
paragraph is a node and hyperlinks between articles
represent edges.

During the retrieval stage, the model creates a
set of candidate paragraphs Ct composed of the
top-F scoring Wikipedia paragraphs using TF-IDF.
At each timestep, a recurrent network iteratively
selects a paragraph from the candidate set and gen-
erates a new candidate set Ct+1. The new set con-
tains all of the paragraphs directly connected to the
selected paragraph on the Wikipedia graph as well
as the top-k scoring paragraphs from the previous
candidate set Ct. Each paragraph is encoded using
the BERT [CLS] representation of both the ques-
tion and the paragraph concatenated together. Each
paragraph score is defined as the inner product be-
tween the recurrent network’s hidden state and the
candidate representation. A reasoning path can be
arbitrarily long and ends when the recurrent net-
work picks a special end-of-evidence [EOE] token.
The retriever performs a beam search to output the
top B reasoning paths for the reader.

During the reader stage, the reader model has
a multi-task objective for (1) reasoning path re-
ranking and (2) reading comprehension. Initially,
the reader re-ranks the reasoning paths according
to the probability it contains the final answer. The
reader then selects the highest scoring reasoning
path and performs BERT-style QA prediction with
the context being the concatenation of all para-
graphs in the reasoning path.

To help train both the retriever and the reader, the
authors use negative sampling to induce additional
loss per example. The retriever also augments the
training data by adding high TF-IDF scoring para-
graphs within the Wikipedia graph to each gold
paragraph, creating an artificial reasoning path.

PathRetriever performs exceedingly well on Hot-
potQA, but does not achieve significant perfor-
mance gains on typical Open-QA datasets like NQ-
Open, where it falls short of ORQA. The recurrent
retrieval mechanism for retrieving evidence docu-
ments along with the Wikipedia graph accounts for
most of the performance gains on HotpotQA.

6.4 Low-latency Models

Many of the solutions discussed take a long time
to search and solve a single query. Most consumer
applications desire the lowest latency possible, so
they’re willing to trade off state-of-the-art accu-
racy for a shorter response time. Seo et al. (2019)
demonstrate it is possible to build accurate Open-
QA systems with significantly lower prediction la-
tency.

Dense-Sparse Phrase Index Seo et al. (2019)
propose Dense-Sparse Phrase Index (DenSPI) to
focus on low-latency Open-QA applications. The
key component allowing DenSPI to achieve real-
time speeds is a preprocessed index of all phrases
within the corpus (in this case, Wikipedia).

Both the phrase and question are encoded in 3
parts: a dense vector, a sparse vector, and a scalar.
The dense vector captures important semantic in-
formation and consists of both the start token rep-
resentation and the end token representation, each
derived using BERT. The question’s start token is
defined to be the [CLS] token. The sparse represen-
tation is used to capture precise lexical information
and uses a 2-gram-based TF-IDF model combined
with a sparse vector from the surrounding context
paragraph. The scalar coherency value is the inner
product between the start and end token representa-
tions, which ideally captures the inner contents.

The proposed index would need 240 TB (!!)
of storage. In order to reduce the memory foot-
print, the authors use compression techniques like
reusing pointers, filtering out irrelevant phrases,
and quantization to reduce the storage overhead to
2 TB.

During training, the dense embedding model is
trained in a supervised fashion, where the gold para-
graph is provided for each question. At inference
time, the model searches by either using the dense
vector first (dense-first search) or the sparse vec-
tor first (sparse-first search). The best performing
method uses a combination of both, denoted the
hybrid approach.

DenSPI achieves performance comparable to
baselines like BERTserini on SQuAD-Open; how-
ever, DenSPI spends 0.81 seconds per query while
BERTserini spends 115 seconds per query. DenSPI
also performs 6000x less computation than DrQA
and achieves 58x faster end-to-end inference.



6.5 Context Paragraph Representations
A core component of Open-QA is creating a robust,
semantic representation for questions and context
paragraphs. While sparse embeddings like TF-IDF
and BM25 provide a strong baseline, dense repre-
sentations are space-efficient and useful for inner
product search. In this section, I discuss work fo-
cusing on building strong dense vector representa-
tions for Open-QA.

Dense Paragraph Retriever (DPR) Dense Para-
graph Retriever (DPR) (Karpukhin et al., 2020)
focuses on improving the retrieval mechanism in
Open-QA by only learning dense representations.

DPR generates a dense vector representation for
each paragraph in Wikipedia using a BERT [CLS]
token representation and indexes them using FAISS
(Johnson et al., 2017) offline. FAISS performs
efficient similarity search over dense vectors. At
inference time, DPR encodes the question using a
second BERT model’s [CLS] token representation
and searches for the nearest top-k passages.

To train DPR, the authors use a combination of
positive and negative samples. The positive sam-
ples for each question are the gold paragraphs in a
given dataset. The negative samples are all other
gold paragraphs within the same question’s mini-
batch as well as a single high-scoring BM25 pas-
sage that does not contain the answer string.

When evaluated on retrieval-only tasks, the
dense representations from DPR outperform the
BM25 sparse representations in top-20 and top-100
accuracy on all datasets except SQuAD. The au-
thors follow the argument of Lee et al. (2019), who
describe biases inherit in SQuAD causing TF-IDF
and BM25 baselines to overperform on retrieval
tasks.

Since both representations encode useful and
complementary information, the authors introduce
a hybrid representation which re-ranks retrieved
passages using a linear combination of BM25 and
DPR scores. The authors also train two versions
of DPR: one trained using a single dataset and one
trained on all of the datasets (except SQuAD).

After adding a BERT QA reader to the trained re-
triever models, DPR trained with multiple datasets
is able to achieve state-of-the-art performance on
datasets like Natural Questions.

6.6 Augmented Domain Data
While the task of Open-QA is commonly defined
over a set of source documents like Wikipedia arti-

cles, there are other sources that can be referenced
to help answer questions. In particular, knowledge
bases are full on information connecting entities
by relations to augment Wikipedia articles. Min
et al. (2019b) explore this direction through their
proposed model, GraphRetriever.

GraphRetriever Min et al. (2019b) merge the
WikiData (Vrandečić and Krötzsch, 2014) knowl-
edge base with a retrieval-reader system to augment
the information stored in passages.

GraphRetriever constructs a graph of passages
using entity relations defined within the knowledge
base. The retriever constructs a candidate set of rel-
evant passages and gradually add more each itera-
tion until reaching a maximum size. The candidate
set is initialized using a combination of (1) articles
about entities referenced in the question according
to an entity linking system (Ferrucci et al., 2010),
and (2) the first passages from the top-KTFIDF TF-
IDF ranked articles. Each iteration, the model adds
passages in two ways. First, the model adds pas-
sages from new articles using knowledge graph re-
lations from the previous candidate passages. Next,
the model adds the top-KBM25 scoring passages
within the same articles according to BM25.

GraphReader takes the candidate graph con-
structed by GraphRetriever and encodes each of
the knowledge graph relations into a single passage
representation. In typical BERT-style, the model
uses probability distributions to find start and end
tokens of the highest-scoring span.

GraphRetriever + GraphReader yield state-of-
the-art results on datasets like Natural Questions,
likely due to the fact that the knowledge base
identifies important relations previous models can-
not. The combination of edges between articles
and edges within articles helps the model navigate
Wikipedia effectively and efficiently.

7 Future Directions

Open-QA systems apply numerous different strate-
gies to model the problem, as described in Sec-
tion 6. In this section, I discuss potential areas for
future research.

General pre-trained models: There still re-
mains a very large gap between these models and
systems built specifically for Open-QA. A future
direction for inquiry is whether progress on Open-
QA can be made using general pre-trained models
without throwing more parameters into the model.



That is, can more general multi-task objective mod-
els both generalize well and close the performance
gap for Open-QA?

Novel pre-training tasks: I believe REALM’s
(Guu et al., 2020) pre-training task is particularly
successful because it accurately models the task
at hand. Specifically, the task is to retrieve infor-
mation about a question, and predicting retrieved
documents to identify masked words within the
question seems like a step in the right direction.

A further step forward would be to identify a
new pre-training task that better models the goal
of retrieving relevant information missing from the
question in addition to contextual information.

Multi-hop QA: Current models do an excellent
job of modeling the idea of reasoning paths or col-
lecting groups of relevant documents; however, I
believe the current evaluation methods are lacking.
The most frequently used multi-hop QA dataset for
Open-QA is HotpotQA, which is constructed in a
very specific, artificial way. In addition, context is
constrained to two gold paragraphs, which, in my
view, does not adequately model the complexity
multi-hop QA offers.

An interesting direction would be to construct a
new dataset task containing complicated question-
answer pairs requiring synthesis of an arbitrary
number of documents. Rather than considering 2
documents, the field should instead construct rea-
soning paths of varying length on the scale of 3-5
paragraphs. This would challenge the RC com-
munity to assimilate the context, rather than just
search for answers.

Low-latency Models: Returning answers on the
order of milliseconds would lead to better user ex-
perience and could be integrated in hundred of
devices through applications like Siri or Google
Home. Although DenSPI reduces the end-to-end
inference time significantly, Open-QA systems are
far from being commercialized. An analysis of
how successful current Open-QA systems are us-
ing the compute power of mobile devices would
provide an estimate of how far these systems are
from on-device prediction.

Memory constraints also pose an issue for on-
device Open-QA systems. Specifically, DenSPI
requires a 2 TB compressed index, which is far too
large for consumer devices today. Is it possible
to still answer relevant questions using a subset of
Wikipedia rather than the entire, compressed phrase

index? Additionally, would techniques like deep
compression (Han et al., 2015) work on models
like BERT to make large-scale models more mobile
friendly?

Context paragraph representations: While
BERT’s self-attention mechanism is extremely
strong, I am not necessarily convinced that it is
the best way to capture the information stored in a
question or in a paragraph. An interesting future
research direction would be to investigate how to
represent the meaning of a paragraph or a ques-
tion. One example would be to consider a question
as a combination of filters and acceptance criteria.
The filters help the retriever identify relevant docu-
ments while the acceptance criteria would help the
reader model identify the correct answer within the
retrieved documents. Can models decouple the rep-
resentations of (1) what the question is asking and
(2) how information in the question helps narrow
down where to find the answer?

Augmenting domain data: The use of addi-
tional data to augment Wikipedia is a very new and
fresh approach for Open-QA. GraphRetriever (Min
et al., 2019b) demonstrates strong results by incor-
porating a knowledge base. I think this direction is
underexplored and can be joined with other Open-
QA directions. For example, incorporating a novel
pre-training task with the Wikipedia/WikiData
knowledge source may distill a better understand-
ing of how to effectively use both and can further
improve results.

8 Conclusion

Over the last few years, Open-QA methods im-
proved dramatically. Although the task is far from
solved, numerous promising directions of future
research will continue to drive the field forward.

This survey outlines the problem of Open-QA
and describes many popular datasets and evaluation
techniques. I discuss important baseline models
and explore how proposed systems take divergent
strategies to tackle the problem. I finally summa-
rize possible directions for future work along mul-
tiple dimensions to push the field incrementally
forward.
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Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Ledell
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